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SI ABSTA CT

This report presents a physical and mathematical theory of radiation directivity
whch permts the synthesis of antenna arrays t produce rIa on patterns

which may have arbitrarily selected intensities for all directions of radiation.

I The method is equally powerful as an analysis tool.

Part I presents a physical explanation of the theory.

Part 1i sum .izes the formulas which are used (the derivations of the formulas

i are presented in Appendices A and B).

3 Part I discusses the synthesis problem in detail.

Part !V summa ises the material presented in this report.

I
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PART I. THE GENERALIZED SPECTRUM THEORY

INTRODUCTION

This report describes and explains the application of a theoretical approach

which relates the radiation4irectivity pattern of an array of identical parallel

antennas to the relative amplitudes and phases of the radio-frequency voltages

or currents fed to the component antennas of the array. This theory is also ap-

plicable to sources of radiation wherein the energy is continuously distributed

over the radiating aperture, rather than being concentrated at discrete points.

The theory is applicable to problems of analysis and to problems of synthesis,

and permits a classification of arrays in terms of those characteristics which

are the fundamental limitations of each class of arrays, When only a finite
number of discrete radiators or collectors are available the optimum design is

clearly defined subject to any set of specified conditions.

The theory shows the relations between the illumination of the aperture and the

distribution of radiation through an infinite sphere concentric with the radiating

aperture in free space. The aperture is the region in space occupied by the

radiating elements. In this report the results are presented in terms of field

strength. Power may be calculated by the usual methods if desired. The illu-

mInation is the distribution of the amplitudes and phases of the currents or

voltages over the aperture, relative to a common source in transmitting arrays,

and relative to the receiver input terminals in rece vig arrays.

The directivity pattern of a receiving array gives the relationship between the

output voltage of the array and the direction of arrival of a plane wave having

a specified fIeld strength and polarization.
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The theoretical patterns are the same for receiving and transmitting arrays.

The types of patterns which can be obtained with an array are determined by

the shape of the aperture, the number of radiating ete ments (or the allowable

complexity of the illumination) and the spacing between elements. The par-

ticular pattern for a given aperture is determined 'by the illumination.

Apertures may be divided into three broad groups.

(1) Line Sources. These include straight line or linear arrays, circular

line arrays and other shaped perimeter arrays, In the theoretical init a line

source can be synthesized to approximate, ;arbitrarily closely, a radiation patm

tern defined for all azimuths at constant elevation; all elevations at constant

azimuth, or, in general along such directions as can be defined by a curve

drawn on a sphere which is calibrated in azimuth and elevation.

(2) Surface Sources. These include planar and non-planar area arrays;

planax arrays include circular area arrays and rectangular (asparagus patch)

arrays. In the theoretical limit a surface source can be synthesized toapprox-
imate, arbitrarily closely, any pattern (subject to certain symmetry restic-

tions) as a function of azimuth and elevation.

(3) Volume Sources. Arrays enclosed within a volume may be used to ob-
tain "y arbitrary pattern over the radiation sphere; this may often b accom-

pUshed with a smaller maximum aperture dimension than is requred for sur-

face arrays; in the case of discrete arrays it permits a large number of an-

tennas to occupy a comparatively small region and yet be spaced far enough

apart from each other so that mual reactions are small.

THE PHYSICAL BASIS FOR DIECTITY

The directivity of an array, like the selectivity of a resonant circuit, is a

phase shift phenomenon. Consider two antennas such as are shown in Figure

la. A plane wave coming from a direction defined by an azimuth angle %

1-2
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and an elevation angle h, as shown, will induce a voltage in antetna #1 at a

later time than it will induce the same voltage in antenna #2. The radio fre-

quency voltages induced may have their time -varying phases represented in

the usual manner in the exponent of ,' w4 . The space phase shift is propor-

tional to the separation, x, between the antennas, and when the separation is

measured in electrical radians the phase shift is equa to the projection of the

spaciAg distance in the direction of the wave path. Thus, if the voltage induced

in antenna 1 is , J  the voltage induced in antenna 2 is

[ At+td 4,.s cesh ] (1)

The time -variable term is common to all the collectors o an array and will be

omitted hereafter.

When there are a number of antenas spaced within a region the voltages induced

in the antennas may be brought to some common point through transmission paths

of known relative delay and attenuation and then added. The resultant voltage is

found from the sum of these vectors. The directive pattern, or the amplitude and

phase of the resultant voltage as a function of a and h, depends on how the rel-

ative phases of the several induced voltages vary, with a and h; this is much like

the selectivity of a tuned circuit in which the gain characteristic is determined

by the phase angle between energy stored at the resonant frequency and the en-

ergy supplied at the input frequency. Because of this similarity it is reasonable

that spectrum or Fourier transform analysis, which has proved such a powerful

tool inircu t theozy, should find its application and extensIon in radiation theory.

However, before exploring the meaning, interpretation and use of the spectra

related to antenna arrays it is useful to introduce several useful concepts such

as the geometrical space factor and to consider also how radiation patterns may

be represented or thought of, and to interpret the physical reasons for the limi-

tations of the three classes of arrays described earlier. The concepts developed

here will help lay the groundwork for later considerations.

'-4



THE GEOMETRICAL SPACE FACTOR

it has been customary for sofrie time, when describing an array of identical, par -
allel ante.nas, each having a directive pattern F (d, h), to write the induced

voltage of the Kth antenna as F ( , h) " where 0k represents the
space phase shift, The factor F (e , h) is common to all the elements of the
array and may be factored out when the contribution of all the antennas of the ar-
ray, are summed. The radtation-directivity pattern of the array is then

PC , h)~ F0 ( a , h ) ' 5 -,) (2)

The S function is called the geometrical space factor and it is this space factor
which will be dealt with hereafter. The space factor is the radiation-directivty
pattern of an array of hypothetical isotropic radators.

THE REPRESENTATION OF DIRECTIVE PATTERNS

It is convenient to represent the directive patterns of antenna arrays by their
space factors relative to a sphere such as is shown in Figure 2a. Each point
on the surface of the sphere, Which is called the radiaton sphere, has a direc-

tion from the center specified by the coordinates of azmuth and elevation; it

is convenient therefore to use the sym bols and h. This has a useful phys-
ical basis not only for receiving arrays such as were described above but also

for transmitting arrays for which the directive patterns are described in terms
of the radation though a sphere very large with respect to, and concentric with,
the afray, The patterns obtainable for receiving and transmitting atens have

the sae basic physical limitaions.
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3 The sphere shown in Figure 2a may have any convenient radius. it is possible

to represent the space factor corresponding to any direction (a, h) by erect-

I ing an ordinate perpendicular to the surface of the sphere at each point, the

ordinate being proportional to the space factor in the direction defined by that

I point. (While relative time delay in various directions, which is represented

by the phase of the radiation in these directions, is not usually of interest,

3 phases may be represented by a second set of ordinates on the sphere or by

other means. ) Alternatively, contours for equal space factor may be drawn on

3 the surface of the sphere. in some cases, and particularly with plane arrays,

it is convenient to divide the sphere into two hemispheres and to project the

3 coordinates of each hemisphere on one or more of the planes shown in Figure

2a.

A projection on' the horizontal plane which is particularly useful for arrays of

Iantennas whose centers lie in a horizontal plane is shown in Figure 2b. Figure

2b shows a pattern of the type having a single large pencil lobe and virtually no

I side lobes. The amplitude under the surface represents field strength in the

corresponding direction. it will be shown later how arrays my be designed
to produce lobes of ths type.

j The patterns of space factor for an array of antennas whose centrs are in a

vertical ple are conveniently represented in terms of the projection of the

I coordinates of the radiation sphere on a vertical plane.

ngeneral te space factor for any array may be represented in terms of the

Iprojections, on two planes, of the coordinates of the radiation sphere.

1
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THE LIMITATIONS OF THE THREE CLASSES OF ARRAYS

A line which represents the loeus of centers of an array of isotropic antennas
is shown in Figure 3a; and Figure 3b shows a curved line on the radiation sphere
along which a particular desired pattern may be obtained with this class of ar-
ray. If the curve of Figuire 3a is divided into N separate segments represent-
ing N antennas then the cu rve of Figure 3b can have independently chosen space
factors at N points. In the limit therefore, an array along a line curve can be
used to determine any arbitrary pattern along a contour defined by a line curve

in the radiation sphere,

A sarface which represents the locus of centers of an array of isotropic anten-
nas is shown in Figure 3c. This surface is divided into N sections, Figure
3d shows how the surface of the entire radiation sphere may be divided into

2
N sections, the space factor for each section being independent of that in the
other sections. In the limit, thereforea surface array can produce ay desired

pattern in all directions (subject to symmetry restrictions).
Figure 3e shows a volume filled with radiators. The volume may be divided

into N3 increments. Figure 3! shows the surface of the radiation sphere now

divided into a number M2 of independent increments, where M N . A vol-

ume array can produce any desired pattern, and sometimes a volume array
permits a saving in array space, or in te required number of antennas. An
obvious question at this point is why the volume array is not related to a vol-

ume rather than a surface; this will be answered by the material presented

herein.

1-8
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I FOURIER ANALYSIS OF APERTURE ILLUMINATIONS

Some of the physical principles involved in the application of Fourier analysis

and transform theory to anten-na arrays can be most easily shown by first con-
I sidering arrays of antennas along a straight line; such an array is shown in

Figure 4a. The amtennas in Figure 4a are placed along the x axis within ther region (4, X). While the grouping of antennas is arbitrary these arrays may

often consist of regularly spaced antennas. The region, of length 2X, which

Iis called the aperture, is slightly larger than the distance between the outer -

most antennas. This allows an equal space for each antenna and simplifies the

I mathematical results.

For theoretical purposes it is extremely useful to consider the antennas as con-

tinuously filling up the available region as shown in Figure 4b. This does not

i place any limitations upon the theory as it will be shown later how the effects

of discreteness of the antennas may be considered. However, it does produce

a substantial simplification of the theory since the space factor, which consists

of the sum of a number of vectors, can be replaced by an integral in the case of

I continuous aperture illumination. This procedure yields solutions in compact,

closed forms and is used for all the other types of arrays considered here as

1 I well.

The aperture illumination is represented by the function

1 (3)

I

I
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In the case of continuous illumination the space factor is determined by integrat-
ing, rather thn adding, the effects of all the currents along the line of the array,

eas is shown in equation 4.

o coth (4)

The types of radiation patterns which are most generally of interest are those

having a pronounced major lobe. It is then convenient to introduce an inital

phase adjustment such that for one direction (a o ho) all of the vectors add in
00

4 phase for real ai positive values of I(x). A phase anigle of zero in the selected

direction is most convenient and therefore equation 4 can be rewritten as shown

in equation 5.

(5)

The form o eq ution 5 may be simplified by defining a parameter u such that

. o C COS C.s a. cos A.

The radiation pattern is then found from

p | Sc --, X .J 1 (1 )J L(7)

I,
J 1-12
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Equation 7 has the same form as the Fourier transforms used in ordinary spec-

trum analysis. I(x) is similar to the time function defining a pulse which ex-

5 ists entirely within specified limits of time and the parameter u which was in-

troduced above takes the place of (- w), Equation 7 is the analysis equation;

it obtains the space factor from the aperture illumination. By the reciprocal

I properties of Fourier transforms it is immediately possible to write the syn-

thesis equation

(8)

IIThus it can be seen that the.limitaUonsunon -the _s ace -factor-of an array con-w
tamed wholly wi thin ajied spnape ttervalare-similar to thelmtatons uon

I the frem ency saectrum of-a simnal which is wholly contained-within aseci-

fled tibne-interval.

Before extending the analysis it is well to review how the above results were

I obtained:

(1) Arrays of identical parallel antennas may be considered as being madeI up of a continuous distribution of identical sources.

I (2) The radlaton-directivity pattern of an array is the product of the di

rectivity pattern of the individual antennas and the geometrical space factor.
The aperture illumination is defined by a fundcon whch defines te reatve

amplitudes and phases of the currents or voltages fed to the aperture. The
sum or resultant of the contributions of all parts of te array are combined

in the space factor which takes the form o a Fourier integral.

* n this report "spectrum, describes the amplitude and phase of the

Fourier Tra orm, rather than amplitude squared.
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(3) The directivity pattern of an array is a phase shift phenomenon, much

I like the selectivity of a resonant circuit. It is useful at this point to recall

some of the properties of Fourier transforms and the relations between time

pulses ad frequency spectra, but to utilize, instead of frequency and time,

tho u and x coordinates which we use here. For example, Figure 5a shows

one forn 1 which an aperture illumination might take and Figure 5b shows its

spectrum relative to the new coordinate, u. Both the illumination and the

spectrum can have real and imaginary components. However, it may be rec

Ognized that only certain values of u correspond to real values of azimuth and

elevation.

This will be discussed In greater detail later when a broader basis for discus-
I I sion has been developed.

It was stated earlier that a linear array cannot produce any arbitrary pattern

;over the entire surface of the radiation sphere. Therefore, in order to show

clearlj tie physical significance of the spectrum of the aperture illumination

it will be necessary to consider the simplest type of array which has suficient

I generality suck that it can theoretically produce any pattern; this is the plane

area array.

THE TRANSFORM PLANEI
A plane array of antennas is an array in which all the antennas are identical

I and parallel and the centers all lie in a plane, for example the horizontal
ne. The space factor is obted by assuming the antennas isotropic. An

J array of this type is shown in Figure lb and If rectangular coordinates are

used to represent distance in the plane then it Is convenient to consider the

J array as wholly c ed within some rectangle, such as the one which is

I
11-14
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shown. in this case phase shifts are also introduced by the y coordinates of the

positions of particular antennas as compared with an antenna at the origin. For
example the space phase shift between an antenna at position 3 and an antenna

at position I is expressed by

S31  X3Cos~ COS h SIn Coh ()

The phase of the voltage vector may be made to be zero for a wave coming from

the direction o( o' h-). A new parameter v is defined as shown below:

S"S,n COSh-SI 0 Ca osh0  (10)

The aperture ilumination must now be represented as a function of both x and

y; hence when the sum of the contributions of all the currents in all the parts of
the array Is found by integration the spectrum appears in the fOllowing form:

Equation 11 is known as a double Fourier integral. As an ex ple of a double
Fourier integral, a two-dimensional pulse, I(x, y) which is transformed into a

two-dimensional spectrum, S(u, v), is shown In Figure 6. This shows the case

where both pulse aid spectrum are real functions. The spectrum of the aperture

illumination is a function of the two variables u and v and is represented in mag-

I nitude by a surface over the (u, v) plane. (Another surface over the (u, v) plane

,could be used to represent phase.) The (u, v) plane is called the tran sorm

plane and has considerable physical significance, Any type of aperture illumi-

nation results in a particular type of pattern In the transform plane,
I 1-!
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The space factor at any point on the surface of the radiation sphere can be eval-

uated if we now find the relation between points in the transform plane and the

corresponding points on the radiation sphere. This relation will, of course,

depend on whether the plane of the array is horizontal, vertical or oblique.

For a horizontal plane array the equations of the parameters u and v show that

radiation space, as defined by the points on a hemisphere, maps into a circle

in the transform plane suich as is shown in Figure 7a. This circle will be seen

to be identical with that previously shown in Figure 2aw Because the direction

of zero azimuth was taken as parallel to the x axis in the plane of the array it

appears in the transform plane parallel to the u axis. The circle has a unit

radius. The distance from the center of the circle to the origin is cos h-
0

The origin corresponds to the direction ( e ' h ). This leads to a signifi-

cant physical conclusion. The pattern in the transfotr_ plane is completelyde

terminedby the aperture illumination Iftay.The location of .the pointsin the-

transform plane which correspond to real values of azimuth-and elevation are

completely and independently determined by- the initial phase adjustment. The

value of the spectrumat any pit in ttransform plane which corresponds to

a real direction in radton space is the sice factor for that direction and has

pthe groper- phase anle.

With the definitions of the parameters given earlier in equations 6 and 9 the

circle correspon ing to radiation space (or the radiation circle) can occupy

any Position in the transform plane such as to include the origin win or on

its circumf erence. In a more general case the radiation circle can appear
anywhere in the transform plane. This is useful for line-source arrays.

The positions of the radiation circle for crossfire, endfire, and broadside

arrays are shown in Figures 7a, b and c.

I
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Eximples of patterns obtained in analysis or synthesis problems of plane arrays
will be shown later in order to clarify and extend the concepts thus far developed.
However, before showing these examples it is useful and informative to inquire
further into the reason why the radiation hemisphere maps onto the transform

plane in the particular way that it does. in order to do this it is convenient to

consider the radiation pattern of the most general type of array, in which the

antennas are distributed throughout a volume.

TRANSFORM SPACE

Two antennas of a volume array are shown in Figure le. In this case the rela_
tive space phase shift of antenna #4 with respect to antenna *1, includi g the

phase adjustment which brings all the vectors i phase for one direction is in
cluded in

'er J(U4x+vj+Wj)
(12)

where

S tLF 4"1~kS 1 nb (13)

In this case the spectrum must be represented by a volume, or three dimen-
sional space, called transform space. The locus of points correspondiig to te

various azimuth and elevation directions may be mapped onto the surface of a
unit sphere, called the radiation sphere, and which is shown in Figure 8. The
sphere may be made identical w the sphere showin Figure 2. The direction

from the center of the sphere to the origin is'(, ho) and the origin is a point

on the sur ce of the sphere, For some applications, it is desirabe to have the

1-20
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I origin outside the radiation sphere. In this case, parameters u , lie and

X- are added to u, v, and w respectively. The radiaton sphere, as a fuction

of u and v, may be completely defined by its orthographic projections. in the

case of a plane array, which is represented in actual space by only two dimien-

Isions, the patterns will be a function of only t wo of the three transform coor-

dinates.

Every point in transform space has associated with it an intensity, specified by

the space factor, B, which is a function of the three variables u, v and w.

This is like an electric field for which the intensity is specified at every point.

The dimensions of S are complex field intensity, defined by an amplitude and a

phase.

The amplitude and phase associated with those points in transform space which

coincide with the surface of the radiation sphere define the radiation for the cor-
responding values of azimuth and elevation. This is the reason why this method

Sof representation was chosen earlier.

jSPECTRA OBTAINABLE FROM RECTANGULAR PLANE ARRAYS

it is intended that the mathematical treatment of the radiation theory herein pre-
sented shall be left for later parts of this report. However, it is useful at this

Jtime to make use of one of the relationships which will be developed later in

order to justfy ad explain some of the physical examples and sketches which

will be shown here to indicate the physical limitations upon the spectra of aper -

ture illuminations and the patterns which may be obtained in radiation space.,

For example, it is convenient to describe a typical aperture illumination.

1-22



-I

An illustrative continuous aperture illumination for an array contained within a
r ectangle of area 4W was shown in Figure 6. The illumination is conveniently

expressed mathematically in terms of a Fourier series, as is required for a

two dimensional function. It is useful to write the double Fourier series in ex-

ponential form as shown below because when this form is substituted into equa-

tion 11 and integrated a particularly useful form is obtained.

~ 'K1 (14)

For simplicity, consider a single, harmonic term of the series such as

K

When this is substituted into equation 11 it is found that

s K i ,I+ K.p (16)

The spectrum, or space factor shown in equation 16 has a famWliar form when

either u or v is constant, since in that case it varies as the well known

curve, For example if (N'Yt M ) is zero, then S M(u) may be represented

as shown in Figure 9a. This function goes to zero at intervals of u sp ced by
except that SKM1 (u) has the amplitude IKM at the point where the numerator and
denominator of SK(u) both go to zero. This occurs when u + Ki = 0. A

series of such curves with different values of K would be spaced so that the zero

I43
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points coincide and therefore a series of three terms such as shown in FigureIF 9b is completely specfied by the amptdes 10, 100 0, an d 1 The points

where the zeros can occur are called the independentpints. -A function-which

is known to-be made-unof a-seriesof this tvpe of -X- functions may be corn

-Diely s-ecified by its-vaiues-atthe- indeendent -oints. whch_(IL ay~henoted)

aree a!-to the coefficients iniheFourier series forthe aoerteii-llutuIntion.

in the two dimensional case where 8 (u, v) is given by equation 16, the spectrum

may be represented by a 3-dimensional sketch such as was shown in Figure 6,

or, alternatively and more simply, by the locations and amplitudes of the in-

dependent points as indicated in Figure 10.

It can be seen that for any aperture illumination which can be expressed as a

Fourier series having only a small number of low order harmonics the i1CM

coefficients will be different from zero only at those independent points which

are near the origin,

THE SYNTHESIS METHOD

The synthesis method consists of building up the desired pattern out of a set of

standard building blocks or eigenfunctions. These eigenfunctions result from

taidng the Fourier transform of the aperture illumination when the illumination

is expressed as a suitable Fourier series. Part 11 of this report gives the de-
tails of suitabe eigeucon exn~sions for several classes of arrays.

As an example of synthesis consider a rectangular plane array for which the

eigenfunctions have the form shown above. Suppose it Is desired to de-

sign such an array having a single narrow main lobe and virtually no side lobes.

It is useful in this case to use a particular set of the transform pulses k own
as the cosine sqaed type. Cosine squared pulses have been used t produce

a flat field on a televisIoiecreen. This subject is discussed by A. V. Louhen

1-25
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and H.A. Wheeler in "The Fine Structure of Television images," Proceedings

of I. R. E., May 1938. A cosine squared pulse is indicated in Figure 5a; it

has a Fourier transform which is very close to being a cosine squared pulse

also. This is shown in Figure 5b. The transform of the cosine squared pulse

can be defined by the set of coefficients.

6,0 10 = -1,o = 2 (17)

Figure 9 was drawn in these proportions. In the two dimensiona-l case a conven-

iently shaped surface may be built up by using the set of coedicients shown in

Figure 11a. The space factor thus produced has virtually no side lobes (the

first side lobe being 32 db down). The space factor which is thus obta ined was

indicated earlier in Figure 6b. The space factor forA. = 0 and h = 00 0

was sketched in Figure 2b. The required aperture illumination has the follow-

ing form, other than the initial phase adjustment of and h- to direct the
0

major lobe in the desired direction,

! (x, Y) = 4 cos Cos 2  (18)

and was sketched in Figure 6a. This is one of the simpler examples of the use

of a shaped aperture illumination to obtain a specfirivity pattern.

If the aperture had been uniformly illuminated then I(x, y); 1o) and S(u, v)

aooand the pattern would have been that of equation 16 with K and M set equal

to zero. The side lobes for uniform illumination are much larger than for cosine-

squared illumination, particularly in the u = o and v = o direcUons. In these

cases the maxima are the s e as in Fige 9.

* Hzeltine Electronics Corporation Report #771 BW.
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The synthesis problem in the simplest case is approached by building up the de-
. sired pattern from the basic building blocks and then finding the necessary aper

ture illumination. The design of arrays which make economical use of the avail-
g able space and which utilize only a small number of radiatting elements in the ar -

ray requires the careful consideration of several factors which are discussed in

Idetail in Section M- of this report. These factors are.

;(I) The type of radiating element and the orientation of the radiating elements
f with respect to the array which results in the most useful function F (d, h).

(2) The combinations of eigenfunctions which reproduce the desired pattern to
Ia satisfactory approximation consistent with an acceptable compromise between

size of aperture and density of antennas.

(3) The modification of the pattern of a continuous illumination by discrete an-

Itennas, and the most advantageous use of this effect.

ARRAYS OF DISCRETE ANTENNAS

An array of discrete antennas may be analyzed or synthesized by considering

Isuch an array as a continuously illum Inated aperture having an illumination which
is the product of two parts. One part i (x) is similar to the illumination already

I considered. For example, see Figure 12a for a line-source array. The other
part P(x) is defined as zero except at the points occupied by te antennas. See

Fgue 12b The total illumation, -(x), is the product of the two as shown be-
low:

I ! (x) = o(X) P(x) (19)

See Figure 12c.
The spectruim corresonding to a continuously ill inated aperture such as shown

in Figure 12a is shown in Figre 13a in which a typical term is setched

as well as the resultant of all such terms, and in which the harmonic amplitudes

I
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I are indicated. The reason theIK coefficients in the S (u) function are called

the harmonic amplitudes is made cleater by conside aion of Figure 13b which

shows the spectrum which would be obWned if the continuous aperture illumi-L

nation of length 2X which is shown in Figure 12a were repeated infinitely at in-

tervals of 2X. This is the spectrum of a repeating pulse sequence and each

vertical line in Figure 13b represents one harmonic component. The effect of

the finite aperture is to modify Figure 13b to Figue 13a, which is a continuous

spectrum, but still may be regarded as being made up of the harmonic compom
nenits,

I The effect of approjdmating the continuous finite aperture of Figure 12a with

the discontinuous finite aperture of Figure 12c is to modify the spectral pulse

of Figure 13a to the sequences of spectral pulses of Figure 14, The pulses in

Figure 14 are separated from each other by a number of independent points, or

harmonics, equal to the number of antennas in the particular P(x) function. This

is a result of the multiplication of the two harmonic series.

These results are of a familiar form. Since the aperture Illumination is like a

I time-pulse which is sampled at a high rate (such as for example, in a super-

regenerative sampling process), the result is that the spectrum of the sampled

pulse consists of a set of modulated carriers. Each carrier is a harmonic of

the sampling pulse rate and each carrier when modulated Is replaced by a har-I monic sequence identical in form with the spectrum of the unsampled pulse but

with the spectral groups centered on the carriers as is indicated in Figure 14.

I The highest unambiguous modulatoh rate is one-half the sampling rate.

I It may be noted in Figure 14 that a diferent picture is drawn depening on

whether an odd number or an even number of antennas defined the sampling

rate. This is because the side lobes of the Si function alternate in Phase

I 1-32
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I The inversion shown in Figure 14 indicates that the phase of the modification

of the original pattern which results from the fact that a discrete number of

antennas is used instead of a continuous illumination always has the same

phase regardless of the number of antenn as in the line, although the amplitude

of the correction term at any point tends to decrease as the number of antennas

I increases,

In the case of a rectangular plane area array the pattern shown in Figure la,

I 'in which only nine spectral components appear for a continuous illumination,

must be modified to the pattern shown in Figure hib in which the nineL-sequence

Iis repeated over the entire plane in a rectangular lattice in which the spacing in

the u direction is equal to the number of antenna rows along the x axis and the

I spacing in the v direction is equal to the number of antenna rows along the
I axis.

The number of antennas needed Within the specified aperture can be found from

I Figure 11 since It is merely necessary to insure that the extra lobes which re-
sult from the discreteness of the antennas do not undesirably alter the pattern

I or space factor in that Portion_ o the transform plane which corresponds to radi"

ation space.I
This problem will be discussed more fully in Section M of this report. However,

in order to round out the general picture of the theory herein presented an ex-
ample will be given next of an analysis problem to wich the theory was appled.

I ANALYSIS OF A CIRCULAR LINE A Y OF DISCRETE ANTENNAS

I There are a large number of forms in which the formula for the pattern of an

array may be written. Some of these involve a reasonably small number of

I simple terms. Others may have sequences of infinite series which must be

!
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added to give the sa'ne results as the closed form solutions. For each general

shape of aperture there is a particular set of coordinates, suited to the geome

try of the aperture, which is most convenient for representing both the aperture

illumination functions and the spectra. in the case of arrays of circular shape,

one example of which is the array of antennas on the peri neter of a circle in a

horizontal plane considered here, it is convenient to use polar coordinates such

as are shown in Figure 15a to represent the geometry of the antenna array. The

angle A is used to represent angular position of an antenna from the x axis, as

shown, and the radius r represents the distance from the origin to the particular

antenna. The phase of tlwvoltage induced in any antenna on a circle, compared

to that which would be induced in an antenna at the center is A O iov COG( A8-)
Two new parameters, 4 and @ appear here. This form could be obtained directly
from the earlier form for rectanglar coordinates by a standard transformation

of the variables; o and e may be defined in terms of u and v.

In this case it is found that the transform plane is most conveniently described

in terms of the polar coordinates shown in Figure 15b in which 0 represents the

angle made with the u axis by a vector from the pointo 0 to any arbitrary

point. The radial distance Iso . The actual spectrum is independent of the

set of coordinates used.

As is the case with most problems in electromagnetic theory which involve cir-

cular geometry the solutions are most conveniently obtained in closed form in

terms of Bessel functions of the first kind. The general formulas for circular

arrays are presented in Part II of this report. The Bessel functions of the

first kind are all very much alike, as can be seen from Fig ure 16.

1
I
I
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The eigenfunctions which appear in the case of the circular array are combin-

ations of Bessel functions of the first kind of *Ci-gament ^4, and trigononom-
etrical functions ofe. For example, an array of ten antennas spaced 1/2 wave

length apart around a circle and having equal currents for all the antennas

would have its spectrom expressed by the equation

S(f),J (o~ --1 Q'e)co (20)

terms in J 20( P R) and other higher terms, all of which can be neglected.

The first term in this expression represents the pattern obtainable for a con-
tinuously illuminated aperture; this pattern is sketched in Figure 17 which indi-
cates by an isometric drawing the spectrum corresponding to each point of the
transform plane in the vicinity of the origin. The second term in the expression

for S (,'e) shown above is the only factor introduced by the fact that the
array consists of ten antennas. This factor is shown for small values of P R

by the isometric drawing of Figure 18. Since both are real fun ctiogs, the total

amplitude is the sum, with due regard to sign, of the amplitudes pbown in Figure
17 and Figure 18. The correction term is zero to several decImal places for a
distance from the origin which increases with the density of antennas pn the per-

imeter of the circle. For example, it may be seen from Figure 16 that the am-
plitude of any Bessel function is negligible until the argument is as large as a

few integers less than the order, as indicated by the values of Jk(K). The sig-
nificance of thls fact will be explained in greater detail in a later section of this
report in which the mathematics of circular arrays will be discussed. However,

it can be seen here that the effect of discreteness in ci cular arrays is similar

to that already found in rectanglr arrays.
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the procedure used in analyzing or finding the pattern of a circular array con-

sists of draw-ng on a suitable set of coordinates, (PO), lines corresponding

to maxima, minima and zeros of S in the transform plane. Along any radial

line is a constant and the spectrum is a function 01 a single variable, p-

Along any circular line concentric with the origin of the transform plane P is

a constant and the spectrum is a function of a single variable, 9 ; critical points

on the intensity contour curves for various portions of the transform plane can

I thus be obtained by simple graphical means using simple functions of a single

variable. This would not be possible if it were attempted to find the ptterns

as a function of azimuth and elevation directly.

When the pattern lines have been plotted in the transform plane they may be

traced on to a piece of special graph paper which represents radiation space.

Figure 19 is a sample of the graph paper used. With circular arrays 0

is generally taken as zero and a choice of h, is made before tracing the pattern

from the transform plane. Figure 20 shows a typical pattern for a circular ar-
ray for which v( 0 and h 0  300. The pattern is indicated by Hnes of

0
extreme or zero values of I8 I

Study of the graph paper shows that certain ranges of elevation are compressed;

for example, it is not possible to read conveniently to within 10 of elevation in
the range 0 to 100 of elevation. However, It will be noted th e pattern lies

are approximately uniformly spaced on this paper. This is because the pattern

in the transform plane is limited in the rapidity with which it can change with dis-

I t e along the plane and the intensity can- be read to the same accuracy for all

values of azimuth and elevation.
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The pemformance of the antenna array as a function of f equency is found by
using the computed pattern with graph papers in which the raddi of the circles

...f
are Cos h. This follows from the general property of the patterns in trans-

0form space; the ratio of the radiation sphere to any reference dimension of the

spectrum (for a fixed illumination over the aperture) is proportional to the fre-
quency. The position of the center of the radiation circle is a function of fre-

quency that depends on the particular phasing networks which are used. The
center of the circle may follow any path (as a function of frequency) which is
consistent with physically realizable phase-shift networks.

II
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PART n

SUMMARY OF FORMULAS

INTRODUCTION

This section of the report summarizes the formulas which are used in the ana-

lysis and synthesis of the three broad classes of arrays. These are

(1) Perimeter arrays. in this class are

(a) Linear arrays, or straight line arrays. (Figure 21)

(b) Circular line arrays. (Figure 22)

(c) Rectangular line arrays. (Figure 23)

(2) Area or surface arrays. In this class are

(a) Plane rectangular arrays. (Figure 24)

(b) Plane circular area arrays. (Figure 25)

(c) Annular area arrays. (Figure 26)

(d) Cubical surface arrays. (Figure 27)

(e) Cylindrical surface arrays. (Figure 28)

Types (a) and (b) are basic and are possibly the most important of all. The

formulas used in (c) are a special case of those used in (b). (d) and (e) are de-

rived from lc and lb by extension.

(3) Volume arrays. In this class are

(a) Cubical volume arrays, (Figure 29)
(b) Cylindrical volume arrays. (Figure 30)

The formulas presented here provide a direct relationship between the llumin-

ation of the aperture and the space factor of the array. These formulas represent

the aperture illumination !n terms of a suitable Fourier series, Thus each com-

ponent of the Illumination is related to a particlar component of te pattern
I
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transform space and the complete pattern is built up of the component building

I bloeks. in all cases it is assumed that the voltages induced in all the antennas

of the array are brought to some common point such as the origin by transmis

I Sion lines of iden tical delay time and then added with suitable modifications of

amplitude and phase which are defined by the aperture illumination and the initial

I phase adjustment. Reciprocal arrangements are made for transmitting arrays.

An aperture illumination of unity is defined for the case where all of the voltages1 are added in phase and with equal amplitude fora sigledfrecton of travel of a

plane wave, specified by = o(0 and h = ho.

The patterns are described in terms of the spectrum parameters, u, v, and w

I oro , e and w. The Spectrum parameters are trigonometrical and hence repetim

tive functions of azimuth and elevation.

I THE GENERAL FORM OF EQUATION

i The formulas which are presented here are all based on a set of basic relation-

ships which are presented below. The phase and amplitude corresponding to any

I particular antenna compared to an antenna at the origi is expressible in these

forms:

I ~~ (iQiz V-D+3)

i where

U COS Cos h - CoS Oo CoS ho
v -:Sin -Cos h -Sn 0-o Cosh 0

.(r SI h - Son hoI
or .POP. 3 (rP 0s(e-e)*W)

where pcs C.4-) COs(Q( -19) -CI
Cos h C11-5
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I Prom figure 16 it can be seen ta

x r cos j u = cosB
y r sin j v ~sin .

The general form is obtained by summing or, the refore, Jn the limit by inte-

grating these terms in I over the entire region which contains the antennas. it

is convenient to normalize the results by dividing the integral by a number equal

to the extent of the region. This extent is a length or an area or a volume in any

I paticular case. The general form of equation is therefore

I sI (region) CJ (region) d (extent)
extent - 'region

I This formula takes the forms shown in Table I for the basic types of arrays.

The first column lists the types of array. The second column lists the basic

I formulas derived from the general form. The third column shows, for those

types for which the results are useW, the inverse transforms by means of which

I I may be found from S, by direct application of Fourier's Integrat Theorem.

Two questions might be raised from consideration of Table I. These concern
(1) The limitations upon the spectrum whch will isure t the required

aperture illumination will not differ from zero In the region outside the

desired aperture and

(2) The Inverse transforms for cir arrays.

These are answered below,

I FOURIER EXPANSIONS OF THE ILLUbMATION AND OF THE SPECTRUM.

I The basis for both the analysis and synthesis methods which are described In

this report is the expansion of the aperture IllumInation Into a suitable Fourier

I
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I
From figure 15 it can be seen that

x r cos 6 u cos,

y r sin~ v =/0 an .

The general form is obtained by summing or, therefore, in the limit by lnte-

grating these terms in I over the entire region which contains the antennas. it

is convenient to normalize the results by dividing the integral by a number equal

to the extent of the region. This extent is a length or an area or a volume in any

Sparticular case. The general form of equation is therefore

e (region) (region) d (extent)=~~J r~n =oegion

I This formula takes the forms shO#n in Table 1 for the basic types of arrays.

The first column lists the types of array. The second column lists the basic

I formulas derived from the general form. The third column shows, for those
types for which the results are useW, the inverse transforms by means of which

I I may be found from S, by direct ip kn of Fourier's Integral Theorem.

Two questions might be raised from consideration of Table I. These concern

(1) The limitations upon the spectrum which will insure that the required

aperture illumination will not differ from zero in the region outside the

desired aperture and

(2) The inverse transforms for circular arrays.

These are answered below.

I FOURIER EXPANSIONS OF THE ILLUMINATION AND OF THE SPECTRUM.

I The basis for both the analysis and syothesis methods which are described in

this report is the expansion of the apte llu--on nto a suitable Fourier

I!-



series and the determination by means of the equations given in Table i of a

suitable expansion of the spectrum in terms of a particular Fourier eigen-

fnction expansion. 'These eigen functions explicitly contain the dimensions of

the aperture. Any spectrum built up out of any combination of any sigle set
of eigenfunctions can be realized by an array contained wholly within the aper-
ture, the size of wmch appears in the eigenfunction of the spectrum, and the

form of which is determined by the form of the eigendunmction.

Tables H M and IV show typical terms in the illumination of the several types
of array considered here and the corresponding terms in the spectrum which

are obtained by substituting the illum ination function into the particular basic
formula of Table I which is applicable to the type of array considered The
derivation of these formulas is discussed in Appendix i. The derivation of

the formulas used for arrays of discrete antennas is given In Appendix 11.

MATHEMATICS OF CIRCULAR ARRAYS.

In order to perform the integration in the circular case it is necessary to use

the following relationship.

EJPC ~ -J (fR) +2 (J) J(PR C OSP ( 9 9)

Thus, for example, for a circular line array. Bessel functions are introduced.

in order to evaluate the circlar area array, a double integration, with respect

to both r and_8 is necessary. This may be done by integrating first with respect

to, and then integrating the Bessel f.unction forms in There are only a
few known indefinite integrals of Bessel functions; these were used to get the

forms which are shown in Table I. Case 2 is a completely general form, in
that any illumination coo theoretically be expanded in a series known as a Dm1
Series, which Is a form of Fourier-Bessel -Series as follows:

Co K"



in this form R is the largest radius of the iperture, the I KM are the roots of
an auxiliary equation, andr 9 K (j) is an added term which is sometimes needed
for this type of series, This form of expansion permits a solution for the spec-
trum in a form such as is shw in Table M, case 2. Alternative forms for

case 2 of Table 'M and the derivation are given in the Appendix A

NVERSIE TRANSFOAMS.

Fourier's integral Theorem, which defines a pair of reciprocal transforms is

most commonly known in the Campeli-Foster form.

G(g)=fS F~f W

When F(f), and Gjg) are real, this defines the relationship between two functions

which can be represented by curves above an axis such as were shown in Figure 5.
In general one or both functions may be complex, and a plane called the p-plane,
where p j 2 wf, is used; complex frequencies have been found a useful aid to

computation.

In the multidmen a~l-ase the eoncep of complex frequencies is more
complicated; however, with respect to each successive ntegraton te to-f

contour integration may be applied in mathematical extensions of the theory.

The inverse "rectan ,laIt" transforms always knvolve th e ame number of

dimensions on both sides of the equations. This is not true, however, of the
circular transforms. For example, a circular area array has the transform

pair

VJ'O S (AI -.

11-8



This has two dimension a in both cases, but the eircular ln ra~pxgfe

on the desired radius when the function S (t, 9) has the constraints~ indicated by the
I form of Table 11, case 2. For this reason the inverse transform for this type was

omaitted fromn Table L.

The circular area case takes a special form when the formulas are written afs

I follows?.

and

where t-o

~7(~ fA Oro7( {r1(, ]dr

These are the Bessel Tran sforms and are simiar' to the Fourier transforms

I the Bessel Transeforms are completely symmetrical and have a kernel of the

fom -KIt intado C + JWt as in the case of Fourier Tran sforms; the

rang ofitgrto for the Bearsel transform is from~ zero to infinity sin ce it

represents radba integration in a plane, and all radii are taken as positive.
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PART II

I SYNTHESIS OF ARRAYS

I iNTRODUCTION

I This section, of the report presents details of how arrays may be synthesized by
the eigenfun ction method and discusses some of the problems which are involved

when the synthesis method is applied. A numerical example of the synthesis of a

1 rectangular ar-ray is given,.

In conclusion, the properties of circular arrays are considered in detMa although

1 numerical examples for circular 1rrays are beyond the scope of this repot.

THE STEPS IN THE SYNTHESIS METHOD

The problems involved in the synthesis of an array become apparent when the
steps in the synthesis method are considered in detail. These are as follows:

(1) The design is undertaken to obtain a particular form of radation pattern.

This is defined in terms of the description of the required size and shape of the
major lobe and allowable size and shape of the minor lobes. Often there are
other limitations whch may restrict the size, sIe and complexity of the array.

I The first step is to clearly define what is desired.

(2) A type of array (such as for example a plane rectangular array or a vertical

cylinder array or some other type of array) must be chosen tentatively and the de-

sign c-ried out with tide type of array to find what degree of complication, what

size array, and how many elements are required in the array in order to meet

the specified conditions. Since there are several types of arrays adequately gen-

I eral in physical characteristics to produce any arbitrary patter, there may ul-
tlmately be a choice among several designs on the basis of economy, simplIcity

I and practicality for the particular application.

_ IH--1
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(3) A tentative choice must be made of the basic elements of the array taking

I account of any ground plane or other reflecting surface which can modify the op-
eration of the array in actual use. The design of the array therefore should in-

I lude the effect of ground planes6 Under certain con,itions the orientation of

the elements in the array with respect to the array gives a useful additional

I variable which can be controlled to help obtain the desired overall result econom-
ically.

I (4) At this point the required space factor may be defined and the space factor

can be synthesized fron the eigenfunctions for the particular type of array being

I considered. Thus the coefficients in the generalized Fourier representation of

the aperture ilumination may be determined.

I (5) The next step is to find the minimum number of antennas which will elim-

inate spurious back lobes. At this point it is sometimes desirable to reconsider

Iwhether it may be possible to reduce the necessary number of antennas by modi-
fying the type or orientation of the basic elements in the array.

I (6) it is sometimes desirable to go through the entire design procedure for

more than one type of array and to compare the end results. However, if it is

I merely desired to find any method which gives the desired results or if there
are specific reasons why a particular form of array must be used the design is

I completed with the priceding step.

DIPOLE ARRAYS

The overall radiation pattern of an array is the product of the space factor of

the array and the radiation pattern of the elements. Figure 31 shows plane

I dipole arrays with three different orientations of the dipoles with respect to the
planes of the arrays. in each case there is shown also how the pattern of a single

jdipole may be represented in the radiation circle of the transform plane. The

I M-2
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circle has coordinates here of the type shown earlier for horizontal plane arrays.

I For each azimuth and elevation there is indicated a relative radiation intensity

from the dipole. The resulting surface defines a function of azimuth and eleva-

I tion which multiplies the space factor at points in the transform plane which

correspond to points of radiation space. This i; the F function which was men

I tioned in Part L

I The concept of the space factor may be readily extended to what may be called

"arrays of arrays," for which the overall pattern is the product of the pattern

I per element, the space factor per basic array group and the space factor for the

set of groups,. The procedure of developing an array into an array of arrays has

I been called convolution, and an alternative approach Which gives these results is

to app!y the failiar convolution or folding integral of Fourier integral analysis.

1 See for example "Fourier Lutegrals for Practical Applications," G. A. Campbell

and R. M. Foster, pairs #202 and #203. The convolution process can be used inI either direction. For exampe, the results obtaied for arrays of discrete an-

tennas give, for the product of the illuminations, the convolution of the patterns.I
PULSE SEQUENCES
There are many types of pulse shapes which can b built from the x of

eigenfnct4on. One simple and useful group of these is shown in Figure 32. Ths

group is, called the flat-field sequence and is one group wch gves very small

side lobes. With some slight mo cations of these, the first side lobe can easily

be reduced to zero amplitude. However, in a practical case tolerance problems
g would make such close design futile.

M
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I sin x

Another very useful type is shown in Figure 33b. Figure 3,3 compares the

cosine and cosine-squared types of iliumination. Use of the illumination speci'
fied for Figure 33b instead of that specified for Figure 33c in an array of the type

I having a single major lobe permits a saving of 36% in the number of antennas rer,
quired for the same 3 db and 6 db beamwidths.

Patterns which are built up of eigenfunctions for which the independent points

I are all within the radiation circle generally permit the exchange of beamwidth

for side4obe level. However, some patterns which use independent points out-
I side the region of the transform plane corresponding to the radiation circle can

exchange number of harmonics (or of an-tenas) for either or both of the above.

I The resulting patterns are called superdirective. A basic superdirective type

of pattern for the linear array is shown in Figure 34, along with the required

I illumination for it. The same principles are applicable to the other types of
arrays.

I EXAMPLES OF SYNTHESIS PLANE, RECTANGULAR ARRAYS:

I Two exaples will be given: the first a qualitative exanple to outline In detaI

what the steps are in th e synthesis process; and the second a numerical example.I
Qualitative Example, Vertical Wedge Beam:

Suppose it were desired to syZthesize an array subject to the follow ng lim ita-

-tions: only verical an tenas above a ground plane may be used; the side lobes
shall be as small as is reasonably possible; and at every elevation the main lobe

g shall correspond to the same value of azimuth as for every other elevation. The
design is based on a dipoke array of the type si wn in Figure 31a, The steps in

I
I
I m-6
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the design procedure are indicated in Figure 35 as follows: The space factor of

the array is first sketched on a design chart such as is shown in Figure 35ai The
single lobe shown here is built up jrom the pulse sequence of Figures 32c and 33b.

I The dimensions of the aperture of the array are found from the desired beam width
as shown in Figure 35a. This determines the locations of the independent points

as is shown in Figure 35b. The last step, shown in Figure 35c consists of finding
the minimu number of an tennas in the array which will prevent the occurrence

of undesirable side lobes due to the discreteness of the array, Since the pattern
repeats in the u and v directions at distances corresponding to a number of inde-

I pendent points equal to the number of rows in the x and y directions, the number

of antennas is equal to the number of independent points within the dotted recta-gle

I shown in Figure 35c.
I ANumerical Exampe:

As a numerical example suppose it were necessary to find the plane area and

approxi.mate minimum number of antennas per unit area required to produce an
array having a beam with a single major lobe and very small minor lobes, and

subject to the following conditions.

(1) The hallfamplitude azimuthal beamwidth shall be about +180 at zero eleva-

tion. This is 3160 total.

(2) The main beam shall be at the same azimuth for all elevations.

(3) The half--amplitude vertical beamwidt sh a be adequate for elevations

'up to at least 600.

(4) The illuminations shall be as simple as possible.I (5) The array must consist of vertical antenn aboe a pane eth.

I

I m-9
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IAn illumination of the type specifiled, for F igur e 33b will be used: in both x and

y directions. ~+cs

I For this type of patternthe half-a mplitude points of the space factor occur at a

separation A ui1 = 1. 64 7'- 1. 6 1. Let these points correspond toc%= 0",
and h 00 and h =_ 78.5So (see Figure 36).i Then An' _ 0. 8=f cos 00 -cog

0 ir
785 ~ or the aperture =_ 2 X -4'.

I The nom inal beam center of the space factor is; half way between these points,)

or at u' . + =0.6.

For ahalfbeamwidthof about 180 let &v o h
Japerture #2Y 516 /Sit.

The independent points in the u direction appear at u' + 0. ' +

But 0. 6 + =0. 6 + =0. 85. The spacing between independen pits is

~which is 0. 5. Therefore the indepen dent points occur at u' 1. 35, 85,

j.35, -15, -. 65, -1. 15, -1 65, etc. These are showin Figure SO. The value
= .85 determines h 0= 3 20.

I The -first independent points in the v direction occur at/v/ = 2. 188L.

I ~_ Sic h pcing between in-dependent points along the v ais is Av y . 37
the independent points occur at /v/ -_ . 188, . 563, 938, 1.313 etc, These

are shown in Figure 36.

I in order to have enough antennas to eliminate side lobes but not more than this
number, let the first zero of the repeated (discreteness) pattern along the u'I axis occur at u' = 41. 15. This is outside the radiation circle. The corre-
sponding zero of the main pattern occurs at u' = 1.35. Therefore 5 rows areJ needed in the x direction.
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I An illumination of the type specified for Figure 33b will be used in both x and

y directions.
Letut ' u + cosh.

0

For this type of pattern the half-amplitude points of the space factor occur at a

separation A u -- 1. 64 1. 6 Let these points correspond too%- 0°
x x

andh 0 andh ft 78.5 o (see Figure 36). Then Au, = 0.8 = cos 00 -cos

6 7 1,67 or the aperture - 2X = 4w.Ix
I The nominail beam center of the space factor is half way between these points,

0.8or atuO = 0.2 + i = 0.6.

For a half beamwidth of about 180 let&v = !,6 = 2(0.3) 06 or they
I aperture 2Y = 5 1/3ir.

The independent points in the u direction appear at u' # 0. 6 + ww + +
2z x

But 0.6 + - 0.6 + 0.85. The spacing between independent points is

Swhich is 0. 5. Therefore the independent points occur at u' = 1.35, . 85,
x

.,35, -. 15, -. 65, -1. 15, -1. 65, etc. These are shown in Figure 36. The value

u' # .85 determines h - 320.

The first independent points in the v direction occur at/v/ , '88.
I Since the s pacing between independent points along the v axis s _v-y = 5

the independent points occur at /v/ - . 188, . 563, . 938, 1. 313 etc. These

are shown in Figure 36.

I order to have enough antennas to eliminate side lobes but not more than this
number, let te fIrst zero of the repeated (discreteness) pattern along the u'

I axis occur at u' - . 15. This Is outside the radiation circle. The corre-

spondng zero of te main pattern occurs at u' = 1.35. Therefore 5 rows are

I needed In the x direction.
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The first zero in the v direction occurs at v = -. 563. Let the corresponding

I zero of the repeated (discreteness) pattern occur at v =, 938; then 4 rows are

needed in the y direction. The black dots in Figure 36 indicate the basic and

I repeated patterns. Then 4 x 5 = 20 antennas are required. The locations of

the antennas are shown in Figure 37. The equation for the illumination isI -" *ccsk,~o s o..J0S4

I
Figure 37 tabulates the relative amplitudes and phases of the illumination for

I the twenty antennas, including the phase adjustment which would make all of

the contributions of the invidual antennas add in phase if the aperture were

I uniformly illuminated.

Contours of the overall radiation pattern including the F0 factor for the dipole
of the type shown in Figure 31a are shown in F-gure 36. Figure 36 also shows

I the horizontal azimuth pattern, which is sketched arounkthe unit circle.

I Some of the physical chaacteristics of circular arrays will be briefly discussed

below, but a numerical example is beyond the scope of this report,

I THE REQUIRED NUMBER OF ANTENNAS IN AN ARRAY OF ARBITRARY SHAPE

I The synthesis of arrays of antennas of ccular or other shapes requires a know-

ledge of how many antennas are needed in order to prevent the appearance of

I spurious lobes due to discreteness effects. Physically the problem Is si ple,

since for example ny plane array can be considered to be contained withi some

I convenent rectangle. In the circular case the rectangle becomes a square in

which the illumination is different from zero ony within a circular region. TheI
l
I r-la
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effect of iscreteness is to make the pattern repeat at such intervals as are

I indicated in Figure 35c. For example, computations on the circular array

with reflector show that when the frequency is increased by 50%, and hence

I the ratio of radiation circle size to space factor pattern size is increased,

side lobes appear in the region of about +800 as would be expected from Figure

I 35c.

I Thus, the (approximate) required density of antennas, that is, number of am

tennas per unit area. in order to control side lobe effects, may be readily de-

I termined for any shape.

i Sometimes an array may be considered most conveniently as the sum of two

arrays and the overall pattern is then the sum (with due regard to phase nges)

of the two patterns; in such a case the discreteness problem is solved for each

component array separately.

I The same concepts are applicable to volume arrays and to spectra in three

dimensional transform space. Thus at this point several broad conclusions
may be stated regardless of the shape of the aperture:

(1) The coarseness or basic ripple or grain size in transform space is

determined by the effective size of the aperture in the coordl, nate direction

corresponding to the tran0sform coordinate along which the grain size is mea-

sured. The words effective size are used because in general patterns which

have small amplitude near the edges have broader main lobes than apertures
of the same size which are unformly illuminated.

(2) A direct exchange of beamwidth for side lobe level may be made by using

illuminations which are largest near the center and which fall to a small value

i near the edges of the array.

I
I f- 15
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(3) There is a direct relationship between the density of antennas in any

direction in array space and the distance between the repeated paterns in the

corresponding direction in transform space. This is a physical phenomenon

which is independent of the exact shape of the array.

SYNTHESIS OF CMCJLAR ARRAYS

The synthesis of circular arrays is complicated by the fact that the Bessel func-

tions from which the patterns must be buflt up are not quite as easy to use as

sinusoidal functions. However, if the various characteristics of theA A.. func-

tions which have been found useful are enumerated then these same cthacteristics

may be found in certain of the forms obtain ed for circular arays.

These useful properties are:

(1) It is possible to build basic patterns by use of the independent point

method.
(2) It is simple with this particular form of eigefnction to exchange beam-

width for side lobe level directly. There are known sets of pulse shapes which

can be easily designed to produce Small side lobes.
(3) The eigenfuctons are sple and of a familiar form.

The terms which appear in the spectrum colum n of items 2 and 3 of Table I will

be briefly discussed below. It will be shown that Type I-2 possess the first
property and that Type W"-3 possess the second property. in both cases the phy-

sicalcharacteristics of the functions, regardless of the values of the indices

K and M, are simple enough so that a little study produces the desired famillty,

!v- ie
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I The Radiation Function (Type M-2)

Consider the function

/0J11=" ~- ) AVK, " ) P ) - .... 2

Il where
U~~ 4 ~~j~(, + H KrKTl>

I
This results from expading an arbitrary function of r in a Fourier-Bessel

I Series,.

n order to find out how the function R ( 4 R) behaves as the parameter H

varies there are tabulated in Table V the forms which RXM ( R) takes when
H takes on several representative values over the range wh it ca have.

Each value of H corresponds to a specific ratio between the derivative of the

radial function and the radial function itself which is associated with the K'th

(exponential) harmonic of the aperture illumination.

Then

i TABLE V

I H RKM (R

RKM~ KM~ (PMR)

R J' - (KR) 2

I m!



All the Bessel Frunctions of the first kind, JK (ptR) behave very much like sinu

soida! functions which are attenuated n aplitude as for 16 R '> K,

and are substantially zero for p R < K approximately (refer to Figure 16).

The numerator functions here behave much like Bessel Functions, and hence

have almost regularly spaced zeros soaced by very nearly . For large

values of p it the functions behave as

± .K JK (p) ±..R J( !,1 (PR)

-
2

For sman vaues of p t the functions behave as J1  (,)

If .. .M

The number H determines the numerator function. The possible roots A

which are the eigenvalues of the elgenfunctions used in the Fourier expansion

of the spectrum are all roots of the function wich appears n the numerator.

The characteristics of the function can be seen from Figure 38 in which Figure

38a shows the performance of the numerator function, Figure 38b shows the
performance of the denominator f%=Uon and Figure 38c shows the composite

function for the case where H = c. The composite function has the same

zeros as the numerator function with the one exception, a KM The composite

function behaves very much like the numerator function until almost up to the

value corresponding to the root, KM One zero is then removed just like

with the Mn functions and for higher values of p It, (p R) is atten-

uated rapidly.
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one property of the Radiation functions RKM R), which appears different

from the properties of the s fction is the form of the denominator.
x

The eigenfunctions for the rectangular case could however be made to have a

similar type of denominator if instead of the exponential form of Fourier series

a sine and cosine type of series were used.' For e ple, refer to Figure 34.
The Sonine Fun.ction (Type 113)

Consider the function

SKA~~~(~/f (1 ) ' L

The function S (R) is a new mathematical function* Which will here be

called Sonine's f unction because it is derived from an equation known as Sonine's

integral (but in the form shown to Table i). For the case where IK-, the func-

tions have been tabulated and these functions are known as the lamrbd functions.
uves Of the lambda functionS taen from Ja e and Emde are shown in Figure

39. it can be seen that the pattern buit up of such a type of funtion would have

a single major lobe and small minor lobes Und that size of the minor lobes can
be exchanged directly for widh of the major lobes.

The general function S. (,&R),can be demonstrated by two types of sets of curves.

The first type is obtaih'ed by letting K M a constant. In this type there are
only a finite number of curves to a set. In fact that number is K+M+2. This type

ha the usefu property that all the fuctions of each set have the same zeros.

*This is V M-+-) = M+1 times the functions which appear in Item 3, Table I.
P ..M+)

The modification is made for plottig purposes. It can be shown that when M -1
the Sonine fm ctions give the same pattern as a circular lie array, and in fact the

illumination for this case is infinite on the perimeter of the circular area and

nite inside. With proper normalization Pad careful mathematical rigor it can be

shown that the circular line array is a limiting case of this sequence.

Note that r (M+2) = (U+-!)! and that 0! - 1

-20
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The second type, of which the curves from jahluke and Ermde are an example,

have K - a constant. (In that case K ± 0. ) This group has an infinite num-

ber of curves per set, all of which have different zeros, and hence is less

useful. Sketches of the six lowest order function sets of the first type are
show-n in Figure 40. These are drawn here to the same scale as Figure 16

for comparison purposes, although larger curves are used for actual design.

It will be noted that each set begins with a Bessel function such as was shown

in Figure 16 and ends with a lambda function such as was shown in Figure 39.

There is a direct exchange between main lobe shape and side lobe mplitude.

The SM(qA)functions have been used for the synthesis of radiation spectra,

Further investigation of these functions leads to other useful properties which,
under certain concitions, simplify the synthesis of circular arrays havig de-

sired properties. However, such a detailed consideration is beyond the scope

of this report.

ARRAYSWiTH VERTICAL DIRECTIVIT Y

Arrays can be designed which have vertical directivity but no azimuthal direc-

tivity. The criteria which must be satisfied in order to obtain this type of pat-

tern are as folows:

(1) The arrays shl be circular n shape and the amplitude of the illumina-

tion s hal be a function oly of the ruius,

(2) The variation of illumination with angle shall be of the type which has

a phase slip of an integral number of cycles going once around the array.
,vjThis tegral sha be independent of radius but it is not n ecessary that the

llumination for al radi shal be in phase.

I
I
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(3) There may be any radial distribution of illumination.

Any one of the circular arrays shown in Tables 11, M, and IV may be used. The
Index number K defines the number of cycles of phase slip around the circle.

THE PLANE AREA REQUIRD FOR A SPECIFIED DIRECTIVITY

The theory which has been developed makes it rather simple to obtain a precise

definition of the plane area required in order to synthesize a directive array of

a specified beamwidth. This can be done with the aid of a blank design chart of
the type shown in Figure 40. By sketchg the desired b shape on Figure 41

and recalling that the radius of a circle is un-ity at the design frequency the re-

quired aperture at the design frequency may be found directly. The relations

between beamwidth, aperture, and side lobe level shown in Figure 33 permit a

simple estimate which is independent of the exact shape of the array which may
eventually be designed for the area.

r-24
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PART IV

CONCLUSION

This report presents a physical and mathematical theory of radiation directivity

which permits the synthesis of antenna arrays to produce radiation patterns
which may have arbitrarily selected intensities for all directions of radiation.

The method is equally powerful as n analysis tool.

The physical limitations of an array are: the region in space which it occupies,

the manner in which energy is fed to or taken from it, and the nuber and type
of antennas in the array. Perimeter Orrays are no sufficiently general to per.

mit the synthesis of all patterns. Area: arrays subject to symmetry restrictions
and also arrays of antenna distributed throughout a volume are capable of pro-
ducing all patterns (in the limit), for all azimuths and elevations.

The region in array space occupied by the antennas is the aperture, and the ds-
tribution of current or voltage over the apere Is the illumination. The over-
all pattern of an array Is the prodct of the pattern per element and the geometri-

cal space factor which results from the distribution of Illumination within the

aperture.

The space factor for an array Is the Fourier Transform of the aperture Illumina-
tion, The transform of the Illumination is representable by a function in the
transform plane for the case of a plane array, and as a function In a 3-di-mension-

al transform space i general. Representation of array space by any system of
coordinates yields results in transform space in terms of a similar set of coordi-
nes. The basic equation which is used to determine the space factor of an array
Is obtained by considering the sum of the contributions of all the elements of the

IV- 1



array in the limit as the numnber of elexments becomes infinite, but with the

total illurina tion remain.-ng finite, The integral equations which result aro

expressible in a set of stan dad forms depending on the coordinate system and

the number of dimensions. When the Illumination is expanded in a type of gen-

eral Fourier series suitable for the particular shape of array, the space factor

may be determined in terms of a standard set of fuctions called eigenfunctions

which specifically contain the dimensions of the aperture. The relationships

between illuminations and spectrum are tabulated in Tables 1 H and iV for

several shapes of arrays.

The spectra obalned from rectanguflar plane arrays are ilustrative of the Syn-

thesis mnethod. The desired aperture may be synthesized as the sum of a set
of eige nctions, i terms of which the coordinates which define the aperture

illumination are simply determined by the amplitude of the desired Space factor

at certain points. The spacing beteen these independent points is inversely

proportional to the aperture of the array. The result of using dscrete antennas

instead of a continuous illumination of the aperture is to mae the pattern repeat

at regular intervals in transform space. The region in transform space taken

up by each of the basic patterns is inversely proportional to the density of the

discrete antennas within the aperture. The number of antennas required in an

array of arbitrary shape may be readily determined by considering the array to
be contained within some convenient rectangular box and thus determining the nec-

essary density of antennas in each coordinae direction to insure freedom from

spurious side lobes due to discreteness. Other methods are applicable for spe-

ci cases such as the circular lI ne array.



array in the limit as the num ber of elements becomes infinite, but with the

total illumination remaining finite,. The integral equations which result are

expressible in a set of standard forms depending on the coordinate system and

the number of dimensions. When the illumination is expanded in a type of gen-

eral Fourier series suitable for the particular shape of array, the space factor

may be determined in terms of a standard set of functions called eigenfunctions

which specifically contain the dimensions of the aperture. The relationships

between iuminations and spectrum are tabulated in Tables 1, I and IV for

several shapes of arrays.

The spectra obtained from rectangular plane arrays are ilustrative of the syn

thesis method. The desired aperture may be synthesized as the sum of a set

of eigen-functions, in terms of which the coordinates which define the aperture

illumination are simply determined by the amplitude of the desired space factor

at certain points. The spacing between these independent points is nversely
proportional to the aperture of the array. The result of using discrete antennas

instead of a continuous Illumination of the aperture is to make the pattern repeat

at regular intervals in transform space. The region in transform space taken
up by each of the basic patterns is inversely proportional to the density of the

discrete antennas within the aperture. The number of antennas required in an

array of arbitrary shape may be readily determined by considering the array to
be contained within some convenient rectanglar box and thus determining the nec-

essary density of antermas in each coordinate direction to insure freedom from
spurious side lobes due to discreteness. Other methods are applicable for spe-

cial cses such as the circular line array,



i is necessary in desinng arrays to be familiar with Stndard Sets of eigen-

function sequences which may be used to produce desired results. The math-

ematical forms obtained for circular arrays involve Bessel functions of the

first kind and the integrals of some Bessel Functions. However, synthesis of
circular arrays is simplified by a study of two special mathematical functions

sj4 x
which have the same useful properties as do the unctions for rectangularx
arraysi

With the synthesis method it is possible to determine the necessary illumination
for gay chosen type of array, and actual synthesis problems must consider the

relationships between the shape of the array, the type of basic elements, the

orientation of the elements in the array and the effects of reflecting surfaces.

For eaple, dipole patterns may be simply represented in terms of the trans-

form plane for various orientations.

The methods herein presented may be put to advantageous use:
(1) The complete choice of pattern which is available with some types of arrays

such as plane area arrays permits the achievement of superior performance to

that of some other types of arrays while reducing the cost and complexity.
(2) It is possible to directly exchge aperture for beamwidth, or beamwidth

for side lobe level.
(3) Superdirective arrays may be designed in which the intensity i those

regions of transform space wch do not correspond to radation spa ce may be
arbitrarily varied in order to obtain greater control over the pattern in the

region of transform space corresponding to radiation space.

iv-3



(4) Arrays may be designed which have vertical directivity but no aimuthali
dir ectivity.

(5) 'The plane area required for a specified directivity m ay be readily foun d
by use of the transform plane.

HAZELTINE ELECTRONICS CORPORATION

bon Richman, Engieer
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APPENDDI A

DERiVATIONS OF EQUATIONS

Table li, Cae 1.

Let

T~x)=~_I~EcJKIrx

Then

5(c)=~x W I("~'dx

K XI

~~~ + sf& X KT)
1 s~0 .K - --- -o

Table 11, Cas e 2.

The following general expansion is used here:

co ((K)' -tZ ~"~P)cos COKOSNP

A41



I

I Then, since

it is convenient to expand i ( into the following Fourier series:

i(0)zi. i11cot + 1  cos + + • IK COS K + ""
[ * ~~~i,,en s, *Iz Si,e 1 +" ' iaK srn Kp "

I
This simplifies the integration, since upon multiplying the above two series

exp- ansions and integrating over an entire period all of the terms will vanish2' t

except those involving terms of the form s Kin S or cos lqo. This leads to
the conclusion that,

and hence

C P06 Cos(B-G) K I~~

I

I

I

I

I



For any aperture ilumination representable in the form of the Fourier Series,
the ter miiay be integrated separately and the results added.

T able A lots -3

This is obtain ed directly from IIX 1 by considering the result of 4 linear arrays
which are the sides of the rectangle.

Tabl e HCase 1

This is m wctextension of iiL 1 obtained by integrating for each variable in
turn.

Let

and let1

where the 4M r the roots of the equation

~KM X HJ(KM):
where

When H + K is negative an additional term 0K9is necessary for this type of

A"3



Fourier-Bessel series which is caHed a Dini Series. Further consideration of
this term is beyond the scope of this report. *

Then SGpe)i.J I'e)i(r 0 )E jpr

or since e is constant in the integration,

F- "J) KCW er() MrJ

Let

OR V. W R'

This is a standard form:**

'rTK ± it"")#kr [TC(p-

*Besse Funcon0s, G.N. Watson, Second Edition, MacMian 1945 Chapter X V M.

,*Bpsel Functfbs, Gray MathewS snt"baoaberta, Chapter Vip. 69 eq, 2, A 4.

A4
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I

I This is zero when p = O, and hence, dropping the subscripts on A. kM
for simplicity,

- (X) __k _ -i _~k.JrA

I
,bt

and hence H _

Since

e'~~~~~~~ J () p J, :_.-<J, (p)

-K JK ,(,. ' ,(Pit)

the foUowing forms for S (oe) are obtained by substitution;

Ic (,0)a-
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WhenR it it is wean kn~own that,*

too (0,f) (,or)

Table flas

Let Kss1 ) l< SK 0)

where0 R

it is upeful to consider

Then let

R sth~ dr R co s t .

and hence

*Bessel Functions, Gray Mdathews -and Mac Roberts, Chapter VI p. 69 e q. 23p 24.



The term in the brackets is a standard form known as So~ne' s First Finite

integral*, and hence

where

Although this formula is for area arrays and may be used when U 0, 1, 2

etc., M 4 - gives the proper form of equations for the circular line array

(except for a constant multiplier).

Substituationi of M 4 - into the equations gives

rK

I ~.i) 2~which is finite

r
except when--- 1. This suggests a modifed normalization procedu re so that

1(r) would define a circular ring for this case.

It may be noted that for this case (m4)' -=PO . Dividig both 1(r) and S~,p) by -4!

Indicates that the circular line array, defined by Mi -1, may be considered a

lifuiting case of this type of Illuiation. Bu this has already been derived.

*Wgtson, Chapter X1I.



Table ifi, Case 4

Let KJ0

then(r~) MA 1Koo196

K~ KO

I r )

K4 it( 1Or) d (p

This is a, standard form*? (and hence) R

This is useful for cases in whic negative powers of %v requIrettth

Illumtion be defin ed as different from zero only in rings which enclose the

origin.

This Is an extension of "l,1ad 1,%3

Tabl III, Cse6

This isaskcomblatioUOf Up lAnd!!-, 2.

*Tables of Jntegrvaand Or Mteaia Data, H. B. Dwgt Revise EdtOR,

Macilan1947. #035. 1
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Table VCase 1

This is at direct extension of H, 1 and M.i 1.

This is acombination of ti, 1 and l[4 4, M1, 5, ori,6
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APPEND=X B

DE1UVATIOtNS OF FORMULAS FOR ARIAYS OP
DISCRETE- ANTENNAS

(1) Lineararas

The Pulse function P Wz is shown below: N is the numbr of antennas.

IL L.
% :0 .~N even

When N is odd

When N is even

Since (i)BfNee

then, whether N Is even -or odd,
00 (N+1 aNp T

ThefAAUnton . () is given by



Sad since I)OX ) e To

I and hence

I For the Kth harmonic component of the aperture illumination, the Spectial

I component for the case of a discrete array is

I 'The effect of discreteness is to make the pattern repeat at intervals of N inde-
pendent points. 'The effect of discreteness depends on the number of antennas

only in degree, hence, because the side lobes of the function measured

at amy point alternate in sign depending on whether N is even or odd, the (41)gterm occurs in the equation to mak the phase of the term added by discrete-

ness independent. at any poit, of the number of antennas; -for example see

I Figure 14.-

the formulas may also be written in closed form. For example, the well knownI result for a uniformly illuminated linear array of discrete antennas would be

i written, in the symbols used here as*

i *See "IElectromagnetic Waves",, Schelkunof, Van Nostrand, p. 342, 353.
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This could be used as an eigenfunction but it has the disadvantage that it is a

function of N. it is mrore conveient to use the "universal" s unctions

for synthesis, although the above may be used as a computing aid.

(2) Rectangular Arrays.

The pulse function is

P(Xy)=Z () ]( .
' -o =g O0

and since

Then

S~ur)=~2 ~ (NX+I)/O(N y I~ [v,N(. +0 +(P)) Nyt M Yv~~~hN

S(,,) -Z + bz)( y+M1+

'This is a two dimensional extenson of the preceding case. See IIgure 11.

(3) The Circular Line Array.
P (o) f!or ties case is found from the followin iagram"

B-3



When A, is Sermi

P()~
In genera.;

then

where A~ is a constant.

Then the follown formula fin- Table 1 is used. (r~ R here)

in order tolr orm the inteift-aton, the following two formulae are required.

I- 0

This Is a trigonometric Fourier series Ini1U with Bessel. function coefcients
which are consAn for the Integration.
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W hen the two series are mult~plled together and integrated, only the terms in

cos sin (K #IN Y)6 Will give results different from zero.

Then

E@fW 
j( 0 t0

For the Kth harmonic

The meanin g of this last form is made clearer if the terms are written out for

three specific cases of the illum- ination. Let A 0 for smplicity. (Wen&~
1s not zero the "correction", pattern due to discreteness is rotated by the angle

A.)

Case 1

We 1 (8)- R Constant (Uniform Illumination)

then

tZ (J)NJJN (pfi) COS NO

toa ( 1)J Ce" cs N

When the antenns are spaced 1/2w wael ngth apart around the circle, the

highest value of pot which normally might correspond to real radiation space

is PR = N. Reference to Figure 16 sho~ws why the terms of j~(')adhge

orders can be neglected.



For exam'ple,

is6 (18) =- 0. 0000000063,35

This effect is not quite as drastic for the lower orders, for example

J1  (10) #0. 2 07 5
J20 (10) =0. 00001151

and J 0() 0.0000000000015561

Thus the series is rapidly convergent in the important region near the orign

wherej4A is small.

Case 2

Let I co)o=R co

then

S~ee) (. K (~pR) caS K6
+ 0) MOCJN + .~ CO'S(N +K)G
d(j)rf-K Jw-K (1 .a COS (N- K)

Case 3
Let I1Q9) =R sin F.,,

then S Co- ); 6 (' J (PA) COS KO
+ G('J)NK (Pee) 5BnCN+K)G

- j)0*KJN..K (pV4) S-- (N-K) 8

!a all cases the first term is wha would be obtained with a continuously ilum-
iaed aperture, and only the first pair of correction terms need uulyb

collected,
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APPENDIX C

TABLE OF SYIMOLS

(1) COMPARATIVE TABLE

'Th groups of saymbols are shown below. One group tabulates the symbols which

represent dimensions and functions in a-ray space. The other group is related

to transform space, Pairs of functions which appear opposite each other in the

table are analogous, or hove similar significance in the two spaces. The capital

letters, X, Y, Z, R represent fixed, usually ma imum values of the vatriables.

Array Space Trnsform Space

x, X Linear Dimension u

y, Y Linear Dimension v

z, Z Linear Dimension w
r, R Radius from Origin

Angle, counterclodwise from 0

the axis

I (W, YJ) The Fourier The S (a, w, &r)
or Op

Illumination Transform Spectrum _ (p.. 4,1'

of

Directions Azimuth Directions from 0
i array angle center of radiation
radialion sphere to point

- space elevation on surface

angle defining in array

radiation space
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(2) ALPHABETICAL TABLE

Symbol Description
B k(G) initial terzn of D1i Series

f Radio frequency

Destgn-eenter radio frequency

F(d, h) Radiation pattern
O (a, h) The radiation pattern of a single antenna

F(f), CampbelPoster form of Fouier Transform

a(f) Campbefl-Foster form of Fourier Transform

h Elevation angle

,ho Elevation angle of nominal beam direction

H A parameter defined on page

I (region) The illumination in a specified region

i(2) Aperture illumination for a linear array along
,the x axis

I I(x)[ IAmplitude of !(x)
I(x, y) Aperture illumination of a rectangular array

in the (x, y) plane

I(x, y, z) Aperture illumination for a rectangar volume
array with (x, y, z) coordinates

IQ) Aperture illumination of a circular line array
I(r, _ ) Aperture illumiaon of a circular plane array

I(r,p, z) Aperture 'illumination of a cylindrical array

I 1() Fourier Bessel form of aper-ture illumination

k(r) Rdia function of the Kth harmonic component
of aperture illumination

Fourier coefficient

!oZ) Envelope of aperue illumination of a discrete
linear array
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.I

(2): ALPHABETICAL TABLE (Conttd)

Symbol Description

(x, y) Envelope of aperture illumination for a
0 rectangular array of discrete antennas

JoP t) Bessel function of first kind of order zero
and arpment pR

J 1 0Qp!R) Bessel function of first kind of order ten
and argament joR

JK(K) Bessel function of first kind with argument
equal to the order

K An integer, an index number

L An integer, an index number

M An integer, an index number

N An Integer
Nx Rpetition rate of patterns, equal to the

number of rows along x axis

N Repetition rate of patters, equal to the
nmber of rows along y

Ani nteger, an index number

p-plane The complex plane of contour integration

P(X) Aperture Illumination i mpulse function for
discrete antennas: along x axis

P(x, y) Aperture illumination im lse ction for
discrete antennas in x, y plae

q An Unteger, an index number

r Ral coordinate in array space

R Outer or constant radius of a circle

R" Outside radius of an annular rn g

RInside radius of an anular ring
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(2) ALPHABETICAL TABLE (Conttd)

SymbolDescription

Radation function

5(u)Space factor in. terms of u

S(uq V) Space factor in terms of u, v

s(pQ 0) Space factor in terms of po 9

S(d Ih) Space factor in terms of~ a h
8 K )Kth, ha-moic com--pon ent of space factor

SEW (u) Kth harmonic component of space factor

Sj-M-(Us v) Kth harmonic component of space factor
SAMOAt) Sonine function

t time

to reference time

Ucoordinftate in transform tipace defined on
page

ul ~coordin ate in tran sforM space defined on
page

v coordinate in transform space defined on
page

w coordinate in transform space defined on
page

x coordinate in array space

x Semi-aperture in the x direction

y coordinate in array space

Y Semi-aperature in the y direction
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(2) ALPH-ABTICAL TABLE (Cont'd)

-bo Description

z Coordi ate in array space

Z Semi-aperture in the Z direction

Azimuth angle

Azimuth angle of nominal bear direction

Angle in array space

(M +2) The ga a function of argument (M+ 2)

77 Variable of integration

0 Angle in the transform plane

A parameter

Radial coordinate in the transform plane

(x) A phase function in the rture llumina -
tion of a linear array

4 A phase difference

A Bessel transform

0 (regon) PMse fun ction defines In a region

lIntegral defined on page

2wrf
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